Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C54

Direct product G=N×Q with N=C22 and Q=C2×C54
dρLabelID
C23×C54432C2^3xC54432,228

Semidirect products G=N:Q with N=C22 and Q=C2×C54
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C54) = C22×C9.A4φ: C2×C54/C2×C18C3 ⊆ Aut C22108C2^2:(C2xC54)432,225
C222(C2×C54) = D4×C54φ: C2×C54/C54C2 ⊆ Aut C22216C2^2:2(C2xC54)432,54

Non-split extensions G=N.Q with N=C22 and Q=C2×C54
extensionφ:Q→Aut NdρLabelID
C22.(C2×C54) = C4○D4×C27φ: C2×C54/C54C2 ⊆ Aut C222162C2^2.(C2xC54)432,56
C22.2(C2×C54) = C22⋊C4×C27central extension (φ=1)216C2^2.2(C2xC54)432,21
C22.3(C2×C54) = C4⋊C4×C27central extension (φ=1)432C2^2.3(C2xC54)432,22
C22.4(C2×C54) = Q8×C54central extension (φ=1)432C2^2.4(C2xC54)432,55

׿
×
𝔽